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Abstract—In this paper we study the effect of extended 

temporal convolutions for human action recognition in 

videos. Our motivation emerges from empirical 

observation that a typical human action lasts several 

seconds constructing important spatial and temporal 

information. Preserving this information while training 

deep models help to improve performance significantly. 

Our empirical study leads to the design of a novel network 

architecture with extended temporal convolution for 

action recognition. Our novel method achieves 

comparable result to that of the state of the art. In this 

work, we also compare training a network for action 

recognition using RGB data and optical flow.  Optical 

flow eases learning motion for action recognition and 

adds substantial improvement to the deep network model. 

Finally, we present an extended temporal convolution 

model fine-tuned on UCF-101 dataset.   
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I. INTRODUCTION 

Recognition of human action in video is a challenging task 
that has recently received significant amount of attention 
among researchers of computer vision. Video based human 
action recognition has a vast and variant application area such 
as surveillance systems, robotics, health care and human 
computer interaction. Unlike classification in still images 
which is concerned with spatial information only, video data 
contains critical temporal information as well, which makes 
the classification task more challenging.  

Recognition of human action from a video stream can be 
defined as classifying human actions automatically using a 
pattern recognition system with subtle human-computer 
interaction [1] [2]. Basically, an action recognition system 
analyzes certain video sequences or frames to learn the 
patterns of a particular human action in the training process 
and uses the learned knowledge to classify novel actions 
during the test phase. 

In this research, we evaluate the extended temporal 
representation learning and the impact of high-quality optical 
flow extraction from the videos on action recognition in 
videos. Our experiment result confirms the advantages of 
extended temporal for learning efficient features for human 
action recognition.  

II. RELATED WORK 

As related works with action recognition in videos there 
were a few video oriented research were conducted. Video 

content analysis is one of the core problems in computer 
vision and has been studied for decades. Many research 
contributions in video processing have focused on developing 
spatiotemporal feature representation for video content 
analysis. A family of video content representation methods is 
based on shallow high-dimensional encodings of local 
spatiotemporal features. Some of these video representations 
include Spatiotemporal Interest Points (STIPS) [3], Histogram 
of Oriented Gradients (HOG) [4], Motion Boundary 
Histogram [5], Cuboids [6], and Action Bank [7]. These 
feature representations are hand-crafted and use different 
encoding technique such as those based on histogram or 
pyramids. Among these hand-designed representations, 
improved Dense Trajectories (iDT) [8], is widely considered 
the state of the art in handcrafted feature representation due to 
its bold results on video classifications. 

With the breakthrough of deep learning in still-image 
recognition originated by AlexNet model [9], researchers 
devoted significant contribution to design similar model for 
video. 3D CNNs using temporal convolutions for recognizing 
human actions in video were arguably first proposed by M. 
Baccouche et al [10]. More recently 3D CNNs were shown to 
lead to strong action recognition results when trained on large 
amount of datasets. The 3D CNNs features also generalize 
well to other tasks, including action detection, video 
captioning [11] and gesture detection [12].  

Current 3D CNN methods for action recognition mostly 
extend CNN architecture designed for static image 
classification. These networks are bound to learn short time 
feature representation.  Basically, human actions in a video 
such as apply eye makeup, bench press or jogging lasts several 
seconds and spans sixty or hundreds of video frames. 
Breaking down this structure to a clip and congesting video 
information by simply average of the clips is likely to be 
optimal in the video level. Considering this, we design a new 
network architecture with extended temporal convolution to 
learn extended temporal information in video clips.  

III. EXTENDED TEMPORAL CONVOLUTION  

Based on our empirical observation most actions favor 
long extents, lasting 4-7 seconds on average. Computing an 
action from video consists of 120 frames on average. Unlike 
still images, video contains temporal information which is 
necessary to represent them during the learning. We believe 
that preserving long temporal resolution should enable the 
network to learn more complex features. Figure 1 depicts 
video frames extracted from two classes of action of UCF-101 
dataset. Our novel extended temporal convolution network is 
able to learn this video representation over long period of time.  
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IV. NETWORK ARCHITECTURE   

We propose a novel network architecture design with 
extended temporal convolution departed from the work in 
[13]. Figure 2 illustrates our network architecture with 
extended temporal resolution. Our network has 5 
convolutional layers, with 64, 128, 256, 256 and 256 kernel 
activation maps followed by two fully connected layers and a 
softmax output layer. We use 3D kernel of size of 3 × 3 × 3 
with stride 1 for all convolutional layers. Rectified linear unit 
is used in between each convolutional layer followed by a 
space-time max pooling layer. Max pooling kernels are of size 
2 × 2 × 2 with stride 2 × 2 × 2 except for pool1 which has 
kernel size of 2x2x1. To help the network learn more complex 
spatial and temporal features we use 0.9 drop out in the first 
two fully connected layers. Fully connected layers are 
followed by ReLU layers. Softmax layer is used at the end of 
the network to output class score probability over classes of 
action.   

V. IMPLEMENTATION  

We train our networks on the training split of both UCF-
101 and HMDB51 datasets independently. We use SGD 
applied on mini-batches with loss function of negative log 
likelihood. Due to limitation in our GPU we use 10 clips of 
batch size as an input to the network. We set the weight decay 
to 3 × 10−5 and decrease it by a factor of 10−1  at every 
reduction of the learning rate. The momentum and dropout 

ratio are set to 0.9. We feed the network with random crop 
input patches of size 58 × 58 × 120   from videos of size 
171 × 128 pixels rescaled to 89 × 67 spatial resolution. We 
extend the temporal resolution to 120 frames and reduce 
spatial resolution to 58 × 58  have reduced network 
complexity. Some classes of action are relatively short and 
have 80-100 frames on average. We pad short clips and feed 
them to the network. Given the small size of UCF-101 and 
HMDB51, we fine tune network that has been trained on large 
datasets. In the first step, we start off by fine tuning 16f C3D 
network trained on Sports-1M dataset [1] to UCF-101 dataset. 
A randomly initialized fully connected layer of size 101 is 
added at the end of the network. We freeze the convolutional 
layers while fine tuning the fc layers. We start training our 
network with learning rate of 2 × 10−4 and decrease it to 
2 × 10−5 after 25K iterations for 5K more iterations. In the 
second step, we feed 120frames to the network and fine tune 
all the layers. Convolutional layers are applied to 120frames. 
We re-trained fc layers of C3D, and down-sample temporal 
resolution of conv5 output and pass it to fc6. We run the same 
number of operations with a slight change in starting a 
learning rate of 2 × 10−5  and decrease it to 2 × 10−6 . We 
also examine the impact of optical flow on our network. In 
order to feed two channels of optical flow (opt-flow x, opt-
flow y), we add a symmetric network model of our network to 
the existing network and use the idea in [14] to fuse the output. 
We benefit from Brox [15] optical flow for our experiment, 
owing to its high accuracy and good representation of motion 
in videos. Our experimental result shows that action 
recognition is easier to learn from motion representation rather 
than raw pixel values.  

A. Datasets and Evaluation Metrics 

The UCF-101 [16] is popular benchmark dataset used for 
action recognition. It consists of 101 action classes, which 
include 13,320 video clips. The videos are collected from 
YouTube, lasting 10-15 seconds on average with the total 
number 2.4M frames. The videos have 25fps frame rate with 
spatial resolution of 320 x 240 pixel.  

The HMDB-51 [17] is another well-known benchmark 
dataset consist of 51 action classes, which include 6766 
videos. The videos have 30 fps frame rate with spatial 
resolution 320 x 240 pixels. Although this dataset is 
considered large enough for action recognition in the past, the 
amount of data for training a deep learning model is limited.  

For evaluation, we rely on standard evaluation metrics, i.e 
per-clip accuracy and per-video accuracy. For clip accuracy, 
we obtain per-clip accuracy by assigning each clip the class 
label with maximum softmax probability output and measure 
the number of correctly assigned labels over all clips. To 
measure video accuracy, we first obtain the video score by 
per-clip softmax score’s average and take the maximum value 
of this average as video score. We then average overall videos 
to obtain video accuracy. We report our result according to the 
dataset’s suggested evaluation protocol, which is the mean 
video accuracy across the given three test splits of the dataset.  

B. Data Augmentation 

Data augmentation is a crucial technique to improve the 
performance of deep learning models with having limited 
amount of the data.  We applied data augmentation on both 
spatial and temporal resolution. During training stage, we used 
random clipping on temporal resolution and random cropping 
on spatial resolution. We also applied random left-right 

 
Figure 1: Video frames from two classes of action. (a) and (b) are video 

frames taken from UCF-101 dataset, indicates ApplyEyeMakeup and 

ApplyLipstick action, respectively. Action contains features: space-

time patterns that lasts 4-7 seconds on average (roughly 120 frames).  

Extended temporal convolution is able to learn this video 

representation over extended periods of time.  

Figure 2: Our network has 5 Convolution, 5 max pooling, and 2 fully 

connected layers, followed by a softmax layer. All 3D convolution kernels 

are size 3 × 3 × 3 with space-time stride of 1. The numbers above each box 

denotes number of filters. The max-pooling layers are denoted from pool1 to 

pool5. All pooling kernels are size 2 × 2 × 2, except for pool1 which is 

2 × 2 × 1. Each fully connected layer has 2048 output units.  



flipping for each clip during the training. In order to evaluate 
the gain of data augmentation we first applied each data 
augmentation individually. We then combined them to 
evaluate the result. Our combined random clipping, random 
cropping and left-right flipping offer us 5.1% accuracy gain 
over clip accuracy and 4.1% accuracy gain over video 
accuracy.  

VI. RESULT 

In this section we present our experiment result. We train 
our network using UCF-101 and HMDB51 datasets. The 
datasets are provided in three splits of the training, validation 
and test sets. We train the network using the training split of 
the dataset, validate it on the validation split and provide result 
on the test split of the dataset. We first train the network using 
the RGB data. Our result shows that training network for 
action classification with RGB data gain 74.1% accuracy, 
worse than 2D CNN models. To evaluate network 
performance, we also train our network on flow data extracted 
from video clips using Brox optical flow algorithm. Table 1 
reports that our novel extended temporal convolution network 
architecture with optical flow data outperforms many 
handcrafted algorithms and 2D CNN based networks for 
action recognition.  Our model achieves good result 
comparable to that of the state of the art. Due to lack of 
resources and limited amount of data we are unable to train 
our network from scratch. We believe that training our 
network on large amount of data, our network will achieve 
higher accuracy. 

VII. CONCLUSTION 

In this research we studied extended temporal convolution 

for recognizing human action in videos. Our study led to 

depart a new network architecture with extended temporal 

convolution for action recognition. We train our model on 

UCF-101 and HMDB51 benchmark datasets independently. 

We used extended temporal convolution on large number of 

video frames and obtained result comparable to the state-of-

the-art on UCF-101 and HMDB51 datasets.  We also 

presented that impact of optical flow over RGB data. Optical 

flow improves the result in video analysis significantly. We 

hope that our analysis will inspire new ideas and help to 

improve the efficacy and modeling for extended convolution 

network. Our future work will be devoted to search and 

improve further state-of-the-art architectures for human 

action recognition. 
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